search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
DOPPLER-RADAR ESTIMATES OF PRECIPITATION


The next step in research will be to better describe such uncertainty trends in order to cascade the resulting distri- butions into application models such as rainfall-runoff models. Other compu- tational models that incorporate pre- cipitation data that can utilize these results include groundwater, water conservation, environmental, contami- nation, agricultural, soil-strength analy- sis (e.g., levees, earthen dams, slope stability, highway embankments, etc.), among other applications. By cascad- ing the input Doppler Radar data into the provided distribution of uncertainty trends developed in the current work, developing a distribution of outcomes for precipitation for subsequent use in other models (e.g. a stochastic “random walk” approach) that operate off the precipita- tion estimates is possible. Further, it is necessary for the continuing assembly of comparative data in order to provide an exhaustive representation, if pos- sible, of all data comparisons. With such diligence, one can update the uncer- tainty estimates as data are collected and synthesized to better develop the uncertainty distributions displayed in this work.


References


1. Austin, P. M. (1987). Relation between Measured Radar Reflectivity and Surface Rainfall. Monthly Weather Review,115(5), 1053-1070.


2. Baeck, M. L., & Smith, J. A. (1998). Rainfall Estimation by the WSR-88D for Heavy Rainfall Events. Weather and Forecasting, 13(2), 416-436.


3. Barnston, A. G., & Thomas, J. L. (1983). Rainfall Measurement Accuracy in FACE: A Comparison of Gauge and Radar Rainfalls. Journal of Climate and Applied Meteorology, 22(12), 2038-2052.


4. Brandes, E. A., Vivekanandan, J., & Wilson, J. W. (1999). A Comparison of Radar Reflectivity Estimates of Rainfall from Collocated Radars. Journal of Atmospheric and Oceanic Technology,16(9), 1264-1272.


5. Dinku, T., Anagnostou, E. N., & Borga, M. (2002). Improving Radar- Based Estimation of Rainfall over Complex Terrain. Journal of Applied Meteorology,41(12), 1163-1178.


6. Gourley, J. J., Maddox, R. A., Howard, K. W., & Burgess, D. W. (2002). An Exploratory Multisensor Technique for Quantitative Estimation of Stratiform Rainfall. Journal of Hydrometeorology, 3(2), 166-180.


7. Fulton, R. (2000). Hydrometeorology Group’s Projects and Plans for Improving WSR88D Rainfall


www.aipg.org


Figure 7 - DREP bands in increments of 0.25 (from -1 to 8) with kernel density estimates applied to each individual band and Box and Whisker Plots overlaid for additional fidelity.


Jan.Feb.Mar 2019 • TPG 25


Figure 6 - DREP bands in increments of 0.25 (from -1 to 8) with kernel density estimates applied to each individual band.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64